23 research outputs found

    SCIAMACHY: The new Level 0-1 Processor

    Get PDF
    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) is a scanning nadir and limb spectrometer covering the wavelength range from 212 nm to 2386 nm in 8 channels. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002 on the ENVISAT platform. After the platform failure in April 2012, SCIAMACHY is now in the postprocessing phase F. SCIAMACHY�s originally specified in-orbit lifetime was double the planned lifetime. SCIAMACHY was designed to measure column densities and vertical profiles of trace gas species in the mesosphere, in the stratosphere and in the troposphere (Bovensmann et al., 1999). It can detect a large amount of atmospheric gases (e.g. O3 , H2CO, CHOCHO, SO2 , BrO, OClO, NO2 , H2O, CO, CH4 , among others ) and can provide information about aerosols and clouds. The operational processing of SCIAMACHY is split into Level 0-1 processing (essentially providing calibrated radiances) and Level 1-2 processing providing geophysical products. The operational Level 0-1 processor has been completely re-coded and embedded in a newly developed framework that speeds up processing considerably. In the frame of the SCIAMACHY Quality Working Group activities, ESA is continuing the improvement of the archived data sets. Currently Version 9 of the Level 0-1 processor is being implemented. It will include An updated degradation correction Several improvements in the SWIR spectral range like a better dark correction, an improved dead & bad pixel characterisation and an improved spectral calibration Improvements to the polarisation correction algorithm Improvements to the geolocation by a better pointing characterisation Additionally a new format for the Level 1b and Level 1c will be implemented. The version 9 products will be available in netCDF version 4 that is aligned with the formats of the GOME -1 and Sentinel missions. We will present the first results of the new Level 0-1 processing in this paper

    The Ariel ground segment and instrument operations science data centre Organization, operation, calibration, products and pipeline

    Get PDF
    The ground segment for the ESA M4 Ariel exoplanet space mission is introduced. The ground segment encompasses the framework necessary to support the development of the Ariel mission to launch, in-flight operations and calibration, data processing pipeline and data handling, including user support. The structure of the ground segment and assumed responsibilities between ESA and the Ariel mission consortium is explained, along with their interfaces. The operational phases for the mission are introduced, including the early commissioning/verification phases, the science operations and the calibration strategy. The smooth transition of the ground segment through the various pre/post launch mission phases to nominal operations will be paramount in guaranteeing the success, scientific return and impact of the Ariel mission. The expected science data products are defined and a representative data processing pipeline is presented

    FDR4ATMOS (Task A): Improving SCIAMACHY Level 1 and add calibrated lunar data

    Get PDF
    The project FDR4ATMOS (Fundamental Data Records in the domain of satellite Atmospheric Composition) has been initiated by the European Space Agency (ESA). Task A of the project covers the improvement of the SCIAMACHY Level 1b degradation correction, with the aim to remove ozone trends from the SCIAMACHY Level 2 data set that were introduced during the development of baseline version 9 (both data sets not released). We will also, for the first time, add calibrated lunar data to Level 1, covering the whole spectral range of SCIAMACHY and the full mission time. The SCIAMACHY processing chain for better Ozone total column data: After the full re-processing of the SCIAMACHY mission with the updated processor versions, the validation showed that the total Ozone column drifted downward by nearly 2% over the mission lifetime. This drift is likely caused by changes in the degradation correction in the Level 1 processor, that led to subtle changes in the spectral structures. These are misinterpreted as an atmospheric signature. We updated the Level 0-1 processor accordingly and a full mission re-processing was done. As a major improvement we additionally incorporated calibrated lunar data in the SCIAMACHY Level 1b product. In the new Level 1b product we will provide the individual scans of the moon as well as disk integrated and calibrated lunar irradiance and reflectance. The instrument performed regular lunar observations building up a unique 10 year data set of lunar spectra from the UV to the SWIR with moderately high spectral resolution. SCIAMACHY scanned the full lunar disk and over the ten year mission time made 1123 observations of the moon. Most satellites can only observe the moon under very specific geometries due to instrument-viewing and orbit restrictions. SCIAMACHY, however, with a two mirror pointing system was much less constrained and was able to observe the moon under an extreme large variation of geometries (especially during dedicated lunar observation campaigns), allowing it thus potentially to tie different satellites and geometry observations together. During the individual lunar observations, SCIAMACHY only saw a small slice of the Moon and scanned over the moon in order to obtain data for the full disk. We combined the individual calibrated scans, correcting for scan speed and the fact the Moon does not fill the entire slit length. The calculation of distance-normalized lunar reflectances did not require an external solar spectrum, but used solar measurements of SCIAMACHY itself. This version of Level 1 will also be the first one that replaces the ENVISAT byte stream format with the netCDF format that is aligned with the product format of other atmospheric sensors like the Sentinels The paper will present the improvements of the Level 1 product, the results of the quality control and validation

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Chapter 5: Calibration and Monitoring

    No full text
    Spaceborne spectral measurements over long time periods require calibration and monitoring of the instrument as a crucial prerequisite for successful retrieval of atmospheric parameters. Calibration applies a sequence of steps to the measurement data while monitoring assesses the optical performance thus permitting degradation corrections. The parameters characterising the instrument were obtained in a sequence of on-ground calibration runs under different environmental conditions. They are stored as Key Data and serve as input when deriving calibrated spectra. Relevant calibration steps include the memory effect and non-linearity, wavelength calibration and both spectral and spatial stray light corrections. Since SCIAMACHY is sensitive to the polarisation state of the incoming light, po-larisation needs to be thoroughly taken into account. The final step performs the radiometric calibra-tion. Once in orbit, the optical performance monitoring establishes information concerning the channel and wavelength dependent degradation. From the combination of the results for the different light paths it is even possible to learn how individual optical components degrade

    Hypereosinophilic syndrome in children

    No full text
    Recently, according to the Hypereosinophilic Diseases Working Group of the International Eosinophil Society, six variants of hypereosinophilic syndrome have been proposed, i.e. (1) myeloproliferative, (2) lymphoproliferative, (3) idiopathic/undefined, (4) overlapping, (5) associated and (6) familial variant. Hypereosinophilic syndrome is a rare disorder in children and can occur at any age during childhood. Corticosteroids are the treatment of choice, whereas other treatment options are hydroxyurea, IFN alpha, imatinib, vincristine, mepolizumab. We present a fulminant fatal case of hypereosinophilic syndrome in a teenager with an initial presentation of an idiopathic thrombocytopenia (ITP) and present a narrative review of literature. (C) 2012 Elsevier Ltd. All rights reserved

    Improving the sea defense of Central Termoeléctrica Antonio Guiteras

    No full text
    The central Thermo Electrico Antonio Guiteras (CTE Antonio Guiteras) is a thermoelectric power plant located in the bay of Matanzas. In 2017, hurricane Irma passed the north coast of Cuba and destroyed the primary sea defense in front of the CTE, causing major damage to the plant. The power plant is renovated, and a new and improved sea defense is currently being constructed. The goal of this report is to answer the following question: to what extend is the power plant protected during extreme weather conditions and what improvements are needed to ensure that the power plant can remain operational during these extreme weather conditions? To determine what the hydrodynamic and meteorological effects are of a extreme weather event such as a tropical cyclone, a synthetic tropical cyclone is created. This synthetic hurricane must generate large significant waves in combination with a big storm surge, to have severe impact on the CTE. It must also have a significant probability of occurrence. To determine this normative synthetic hurricane, multiple synthetic hurricanes are simulated in Delft3D and XBeach and their corresponding return period is determined. As Irma significantly damaged the CTE, this hurricane is taken as the basis for all synthetic hurricane combinations. The hurricanes each vary from Irma in maximum wind velocities, forward speeds and their tracks. To simulate the physics of hurricane Irma, a spiderweb grid is created at the locations of the hourly best track of Irma. This is then used in the Delft3D model as input for the pressure and wind fields of the hurricane. The output of the Delft3D model is validated with recorded data of observations stations in the Gulf of Mexico. Recorded water levels and wind speeds of buoys near Key West are used for validation. XBeach is used to simulate the nearshore physical processes. XBeach can more accurately predict wave propagation and includes higher order processes in its simulation. As input for the XBeach model, the output of the Delft3D model is used.After running all the synthetic hurricanes in Delft3D, the five resulting normative hurricanes are run in XBeach. The synthetic hurricane that creates the largest significant wave heights at the project area is taken as a basis for the final design. This normative hurricane gives a maximum significant wave height of 8.8 m with a corresponding storm surge of 1.61 m at the location of the CTE. With these values a research on the current defense wall is done. Ultimately for a part of the sea defense an adjustment on the existing defense wall is proposed. A second but lower vertical wall with a bigger bullnose is placed in front of the existing one. This creates a triangular shaped stilling basin, from which the water can flow out at the seaside of the wall. For the other part of the sea defense no adjustments on the wall are proposed but an improvement of the existing drainage capacity is proposed. The existing drainage channel, which lies behind this section, is widened and deepened. Additionally, a drainage wall is built around the powerplant, which diverts the overland flow caused by intense rainfall into the drainage channel. MP304Civil Engineering | Hydraulic Engineerin

    Chapter 6: SCIAMACHY In-orbit Operations and Performance

    No full text
    Since the launch in early 2002 SCIAMACHY has successfully operated in low-Earth orbit for more than 8 years. For the first several months a challenging Commissioning Phase programme was executed. It successively brought SCIAMACHY into full operation mode and verified the instrument’s functional capabilities. In early August 2002 quasi-routine measurements executing nominal mission scenarios could start. In January 2003 the routine operations phase commenced. Since then SCIAMACHY is kept under strict configuration control. Because of the harsh space environment the instrument is subject to degradation, both optically and thermally. The optical performance is described by the throughput which is a measure for how optical components in a light path age with time. It also includes characterisation of optical imperfections such as scan angle dependence, channel 7 light leak and spatial stray light. Illustrating the thermal performance includes decontaminations, used to tackle the ice layers in channels 7 and 8 and configuration of the thermal control systems to respond to degradation. Finally the improvement of the line-of-sight performance by determination of mispointing angles achieved the best possible pointing knowledge. This was especially needed for the retrieval of accurate limb tangent heights. The current excellent status of SCIAMACHY is a prerequisite for successfully accomplishing the intended ENVISAT mission extension until 2013

    SCIAMACHY: The new Level 0-1 Processor

    Get PDF
    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) is a scanning nadir and limb spectrometer covering the wavelength range from 212 nm to 2386 nm in 8 channels. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002 on the ENVISAT platform. After the platform failure in April 2012, SCIAMACHY is now in the postprocessing phase F. SCIAMACHYs originally specified in-orbit lifetime was double the planned lifetime. SCIAMACHY was designed to measure column densities and vertical profiles of trace gas species in the mesosphere, in the stratosphere and in the troposphere (Bovensmann et al., 1999). It can detect O 3 , H2CO, SO 2 , BrO, OClO, NO 2 , H2 O, CO, CO 2 , CH4 , N2 O , O 2 , (O 2 )2 and can provide information about aerosols and clouds. The operational processing of SCIAMACHY is split into Level 0-1 processing (essentially providing cali- brated radiances) and Level 1-2 processing providing geophysical products. The operational Level 0-1 processor has been completely re-coded and embedded in a newly developed framework that speeds up processing consider- ably. Currently Version 9 of the Level 0-1 processor is implemented. It will include - An updated degradation correction - Several improvements in the SWIR spectral range like a better dark correction, an improved dead & bad pixel characterisation and an improved spectral calibration - Improvements to the polarisation correction algorithm - Improvements to the geolocation by a better pointing characterisation Additionally a new format for the Level 1b and Level 1c will be implemented. The version 9 products will be available in netCDF version 4 that is aligned with the formats of the GOME-1 and Sentinel missions. We will present the first results of the new Level 0-1 processing in this pape
    corecore